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اختار مركز أبحاث الذكاء الاصطناعي (أیرند) ھذا البحث لیقدم تلخیصاً عنھ یبرز أھمیتھ ویقربھ للباحثین

یقدم ھذا البحث طریقة مبتكرة لتحسین أداء النماذج اللغویة الكبیرة (LLMs) في حل المشكلات الجدیدة والمعقدة
باستخدام التدریب وقت الاختبار(Test-Time Training - TTT) ، وھي تقنیة تحُدث تغییرات مؤقتة على

ARC معلمات النموذج أثناء التنبؤ باستخدام بیانات مدخلات الاختبار. تم اختبار ھذه الطریقة على مجموعة بیانات
(Abstraction and Reasoning Corpus)، وھي معیار صعب یھدف إلى تقییم قدرات التفكیر المجرد.

أظھرت النتائج أن TTT یمكن أن یحسن الأداء بشكل كبیر، حیث تفوقت النماذج المُدربة بھذه الطریقة على العدید
من النماذج التقلیدیة وحتى على بعض النماذج التي تجمع بین المناھج العصبیة والرمزیة.

النقاط الرئیسیة في البحث:
 .1التحدي في حل مھام التفكیر المجرد:

معظم النماذج اللغوية الكبيرة تؤدي أداءً جيدًا في المهام التي تدربت عليها أو مهام مشابهة لها. 

عند مواجهة مشكلات جديدة تتطلب التفكير العميق أو التخطيط أو التلاعب بالرموز، تتراجع كفاءة 

هذە النماذج بشكل كبير.
مجموعة بيانات ARC تحتوي على ألغاز بصرية تتطلب استنتاج قواعد تحويل معقدة غير مألوفة 

للنموذج.

 (TTT):2مفھوم التدریب وقت الاختبار. 

التعريف: 

تعديل معلمات النموذج أثناء الاختبار بناءً على مدخلات محددة. o

آلية العمل: 

إنشاء بيانات تدريب مؤقتة من أمثلة الاختبار. .1
تحديث معلمات النموذج بشكل مؤقت باستخدام هدف معين. .2

إجراء التنبؤ ثم استعادة المعلمات الأصلية. .3

الفرق عن التدريب التقليدي: 

TTT oيعمل في سياق بيانات منخفضة للغاية(few-shot) ، على عكس التدريب التقليدي

الذي يتطلب بيانات كبيرة.

 .3الإنجازات الرئیسیة للبحث:

تحسين الأداء: 

زادت دقة النماذج حتى 6 أضعاف مقارنة بالنماذج التي تم تدريبها على نفس البيانات بدون o

TTT.
 ARCدقة بلغت  %53على مجموعة الاختبار العامة لـ TTT حققت النماذج المدربة مع o

باستخدام نموذج بحجم B8، متفوقة بنسبة 25% على الأساليب السابقة.



دمج الأساليب: 

عند دمج TTT مع تقنيات توليد البرامج، وصلت الدقة إلى %61.9، مما يعادل الأداء البشري o

المتوسط.
التحدي للنماذج الرمزية: 

أظهرت النتائج أن المكونات الرمزية ليست ضرورية دائمًا لحل المشكلات المعقدة؛ يمكن o

للنماذج العصبية عند تطبيق TTT أن تتفوق على الأساليب الرمزية.

 .4مكونات TTT الفعالة:
أ. إعداد البیانات:

توليد بيانات التدريب أثناء الاختبار: 

استخدام أسلوب "الاستبعاد الواحد (Leave-One-Out) "لإنشاء مهام اختبار اصطناعية. o

تطبيق التحويلات الهندسية القابلة للعكس (مثل التدوير، الانعكاس) لتوسيع مجموعة البيانات o

.
النتائج: 

تحسين الدقة بنسبة 55% عند استخدام التحويلات مقارنة بعدم استخدامها. o

ب. استراتیجیة التنبؤ:

التنبؤ المعزز: 

إنشاء نسخ متعددة من المدخلات باستخدام التحويلات الهندسية. o

استخدام تصويت هرمي لتحديد أفضل التنبؤات. o

النتائج: 

التصويت الهرمي أدى إلى تحسين الأداء بشكل كبير، حيث اقترب من الأداء الأمثل. o

 (Fine-Tuning):ج. التھیئة الأولیة

مصادر البيانات: 

استخدمت المهام الاصطناعية، وتحويلات هندسية، ومهام مولدة بواسطة نماذج لغوية كبيرة o

.
النتائج: 

ا حتى عند تقليل حجم البيانات
ً
النماذج التي تم تحسينها باستخدام TTT أظهرت أداءً متفوق o

المستخدمة في التهيئة.

 .5النتائج مقارنة بالأسالیب الأخرى:

مقارنة النتائج مع الأساليب الأخرى (مثل النماذج الرمزية أو النماذج العصبية التقليدية): 

تفوق نهج TTT على جميع الأساليب العصبية التقليدية. o

عند دمج TTT مع تقنيات توليد البرامج، تم تحقيق أداء يعادل الأداء البشري المتوسط. o



التحدیات والقیود:

القيود العملية: 

(GPU A100وقت التدريب أثناء الاختبار طويل نسبيًا 12) ساعة لكل 100 مهمة باستخدام. o

تحيز البيانات: 

قد تكون بعض أمثلة ARC موجودة ضمن بيانات التدريب للنماذج، مما يثير احتمال وجود o

تحيز.
إعادة الإنتاج: 

النتائج تحتاج إلى دراسات إضافية لتقييم التباين عبر تكرار التجارب. o

أھمیة البحث:

التقدم في التفكير المجرد: 

يظهر البحث أن تخصيص الموارد الحاسوبية أثناء الاختبار يمكن أن يحسن الأداء في مهام o

التفكير المجرد.
إعادة تعريف حدود النماذج العصبية: 

يوضح البحث أن النماذج العصبية يمكن أن تنافس الأساليب الرمزية عند تطبيق o

 TTT.استراتيجيات متقدمة مثل
التطبيقات المستقبلية: 

تحسين النماذج المستخدمة في التعليم الآلي، حل الألغاز، وأتمتة التفكير المجرد. o

البحث: التأثیر المفاجئ للتدریب وقت الاختبار على مھام التفكیر المجرد

الكلمات المفتاحیة:

#الذكاء_الاصطناعي #مركز_أبحاث_الذكاء_الاصطناعي #التدریب_أثناء_الاختبار#النماذج_اللغویة
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The Surprising Effectiveness of
Test-Time Training for Abstract Reasoning

Ekin Akyürek     Mehul Damani     Linlu Qiu Han Guo     Yoon Kim     Jacob Andreas

Massachusetts Institute of Technology

Abstract

Language models have shown impressive performance on tasks within their training distri-
bution, but often struggle with novel problems requiring complex reasoning. We investigate 
the effectiveness of test-time training (TTT)—updating model parameters temporarily dur-
ing inference using a loss derived from input data—as a mechanism for improving models’ 
reasoning capabilities, using the Abstraction and Reasoning Corpus (ARC) as a benchmark. 
Through systematic experimentation, we identify three crucial components for successful 
TTT:  (1) initial finetuning on similar tasks (2) auxiliary task format and augmentations (3)
per-instance training. T T T  significantly improves performance on A R C  tasks, achieving up
to 6 ×  improvement in accuracy compared to base fine-tuned models; applying T T T  to an 
8B-parameter language model, we achieve 53% accuracy on the ARC’s public validation set, 
improving the state-of-the-art by nearly 25% for public and purely neural approaches. By 
ensembling our method with recent program generation approaches, we get SoTA public 
validation accuracy of 61.9%, matching the average human score. Our findings suggest
that explicit symbolic search is not the only path to improved abstract reasoning in neural 
language models; additional test-time applied to continued training on few-shot examples 
can also be extremely effective.

1 Introduction

Large-scale neural language models (LMs) excel at performing tasks that occur in their training data, and
often elementary variations or compositions of those tasks (Brown et al., 2020; Todd et al., 2024). Given
natural language task specifications or a small number of examples, LMs often successfully infer the desired
task and produce an appropriate output. But can LMs also solve new problems, involving non-trivial
reasoning, planning, or string manipulation of a kind very different from their pre-training data? This
question is central to understanding the novel skill acquisition capabilities of current A I  systems, which has
been proposed as a key measure of intelligence (Chollet, 2019).

4 5 . 0 %

0.4 3 6 . 2 %
In-Context  Examples Te s t Model Predictions

0.3

0.2 1 7 . 5 %

0.1 6 . 2 %

0.0  1 B 1 B 8 B 8 B  
( F T )  ( F T + T T T )  ( F T )  ( F T + T T T )

?



Figure 1: (Left): Pass@2 accuracy on a subset of 80 randomly selected A R C  validation tasks. T T T  boosts the
performance of fine-tuned models (FT) by up to 6 × ,  with consistent improvements across different model
sizes. (Right): Example of a task that the model successfully solves only after applying TTT.  Full dataset
results in Section 6.
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For complex and novel tasks, it is often difficult to obtain a correct answer simply by sampling from an 
LM (Wu et al., 2023). However, a significant finding in recent years has been that LM performance can 
be substantially improved by augmenting LM decoding with additional test-time computation. Methods in 
this category include chain-of-thought prompting (Wei et al., 2022), sampling with majority voting (sel
f-consistency; Wang et al., 2022), code execution (Brown et al., 2024; Snell et al., 2024; Damani et al., 2024), 
and search (Yao et al., 2024).

One scaling strategy that has gained recent attention is test-time training (TTT) ,  in which models are 
updated through explicit gradient steps based on test-time inputs (Krause et al., 2018; 2019). This method 
differs from standard fine-tuning as it operates in an extremely low-data regime—typically via an unsupervised 
objective on a single input, or a supervised objective applied to one or two in-context labeled examples. 
Modern versions of this approach was proposed for vision models by Sun et al. (2020), and also applied to 
sequence models by Gandelsman et al. (2022). The design space for T T T  approaches is large, and there is 
currently a limited understanding of which design choices are most effective for LMs (and specifically for 
novel-task learning). In this paper, we systematically study the impact of various T T T  design choices, as 
well as its interaction with pre-training and sampling schemes.

We evaluate these methods in the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019), a collection of
extremely challenging few-shot visual reasoning problems. A R C  is an ideal benchmark for testing the limits
of LM generalization as it presents novel tasks, in a novel format, requiring nontrivial search and inference
capabilities. Current language models perform poorly on A R C .  Most successful approaches have relied on
program synthesis techniques (Butt et al., 2024; Ainooson et al., 2023; Huang et al., 2023), though recently
Cole et al. (2024) reported promising results using T T T  on the benchmark.

We identify several crucial ingredients for effective application of T T T  to few-shot learning: (1) initial
fine-tuning on synthetic tasks similar to those encountered at test time, (2) an augmented, leave-one-out
task generation strategy for constructing the test-time dataset, (3) per-instance adapter training and (4) a 
self-consistency (Wang et al., 2022) approach under invertible transformations. With careful choices of these
components, TTT  can significantly improve LM performance on ARC—increasing accuracy by up to a factor
of six over a 1B model, and achieving state-of-the-art results for published, purely neural models on the A R C
task with a 8B model. Indeed, our results show that when equipped with test-time training, ordinary LMs
can match or exceed the performance of many neuro-symbolic approaches on A R C .

Our main contributions1 are:

1. We identify and systematically analyze the key components needed for test-time training on A R C  
tasks, with a a novel test time training data generation and self-consistency component.

2. We achieve state-of-the-art results among published neural approaches on the A R C  validation set:

•  53% accuracy on the public validation set with a 8B parameter model.
•  61.9% accuracy when ensembled with program synthesis approaches, comparable to average 

human performance on the dataset.

3. We demonstrate that tasks that could only be solved by program synthesis previously can be solved 
with fully neural approaches equipped with our T T T  framework.

These results challenge the assumption that symbolic components are strictly necessary for solving such
complex tasks. Instead, they suggest that the critical factor in solving novel reasoning problems may be
the allocation of proper computational resources during test time, perhaps independently of whether these 
resources are deployed through symbolic or neural mechanisms.

2 Preliminaries

In this section, we first formally describe the A R C  challenge. Next, we give an overview of in-context
learning and test-time training, which form the foundation of our investigation. Finally, we detail our default 
experimental setup.

1Our implementation can be found at this link.
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2.1     A R C  Challenge

The Abstraction and Reasoning Corpus (ARC) aims to evaluate the abstract reasoning capabilities of language
models through their ability to solve visual puzzles. Each puzzle, henceforth referred to as task, is comprised
of input-output pairs of 2-D grids (up to 30 ×  30 in size) that contain shapes or patterns made with up to 10
different colors, as displayed in Fig. 1(b). The output of each pair is obtained by applying an intuitive and
shared transformation rule or function y =  f (x). In practice, these transformations are highly diverse and
composite, ranging from simple concepts such as reflection and counting, to more complex ones such as
application of gravity and path finding.

Each task in A R C  is composed of a training and test split, with:

•  Training examples denoted (xtrain , ytrain)k=1 (typically K  ranges from 2 to 7). 

•  Test examples denoted (xtest, ytest)M 
1 (typically M ranges from 1 to 3).

Given the set of training examples, the goal is to predict the test output ytest for test test input xtest by 
reasoning about the underlying transformation.

We denote a task as d =  (xtrain, ytrain, xtest, ytest) where d ∈ D A R C ,  the collection of such A R C  tasks. The
original training and validation sets of A R C  dataset, respectively D train and D va l  , consists of 400 tasks each. 
Success criteria requires to produce exact match for all test outputs (if not partial points are given). Please 
refer to Johnson et al. (2021) for a taxonomy and analysis of these tasks.

Most approaches to A R C  can be categorized into two main categories: program synthesis and fully neural. 
Program synthesis approaches (Butt et al., 2024; Wang et al., 2024; L i  et al., 2024; Greenblatt, 2024) try to first 
find the transformation function f , and later apply it to the test example. On the other hand, fully neural 
approaches (Thoms et al., 2023; Bober-Irizar and Banerjee, 2024) try to directly predict the output ytest, only 
implicitly reasoning about the underlying transformation. In this work, we use a fully neural approach, 
using a LM to predict the test outputs.

We start with an LM pre-trained on text data (without a vision encoder). To provide A R C  examples as input
to these models, we thus require a formatting function (denoted str )  that converts 2D grids into their textual 
representations as shown in Appendix A.3. Previous work has presented examples as lists of numbers (Wang
et al., 2024) or color words, or lists of connected components labeled with shapes and locations (Greenblatt,
2024). Given any such string representation of a task, we may present it to an LM and perform predictions
with few-short prompting, as explained in the next section.

2.2     In-context Learning

At a certain scale, many LMs exhibit the ability to adapt to new tasks without updating their parameters by
simply conditioning on input examples or instructions provided. Given a sequence of input-output pairs
(x1, y1), ..., (xn , yn ) and a new input xn+1 , a LM can be used to generate the output yn+1 by sampling from:

yn+1 ∼ LM(· | x1, y1, . . . xn, yn, xn +1 ) (1)

The possibility of in-context learning as implicit machine learning simulation discussed in previous work
(Akyürek et al., 2022), but the empirical evidence shows that in-context learning with language models does
not always resemble any standard machine learning algorithm (Zhao et al., 2024; Min et al., 2022), and it
does not always work out-of-the box for novel tasks — e.g. small language models (few billion parameters)
performs poorly on A R C  (Opielka et al., 2024; Bober-Irizar and Banerjee, 2024).

2.3     Test-Time Training

Test-time training (TTT) enables parametric models to adapt during inference through dynamic parameter
updates, an approach that remains relatively unexplored in the era of large language models. This technique
is a form of transductive learning, where models leverages the test data structure to improve its predictions.
The general T T T  process works as follows: Starting with initial model parameters θ0, for each test input
(or batch of inputs), we first generate training data DTTT (d input ) from the test inputs. We then optimize 
these parameters to minimize a loss function L ( D T T T ; θ) ,  producing temporarily updated parameters θd

3
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Figure 2: T T T  dataset generation for a test task (Section 3.1): We start by creating leave-one-out tasks from 
the given training examples of the task. These tasks are then augmented through rule-based transformations 
to obtain the full T T T  dataset. Finally, we train task-specific L o R A  adapters on top of the base FT  model.

for prediction. After generating predictions, the model is restored to the original parameters θ0 for the
next instance or batch. Thus, T T T  trains a specialized prediction model for each test input, obtained by 
fine-tuning a base model on a test-time dataset generated from that test input.

In past work (e.g. Sun et al., 2020), D T T T  is typically constructed by applying an unsupervised objective
(e.g. masked autoencoding) to the input x alone. However, the in-context learning setting we consider
provides richer context in the form of demonstration pairs (x1, y1), . . . , (xK , yK ). Here, applying test-time
tuning involves first constructing an initial language model LM, mapping each test input x to an input-
specific dataset D T T T ,  fine-tuning the LM to optimize some loss function L  over the dataset according
to: ∑ d ∈D L (LM( d ) ) ,  and finally sampling from the updated model to obtain a final prediction. Our 
experiments in this paper characterize each component of this pipeline, describing:

1. How to construct the augmented T T T  dataset D T T T  from the test input (Section 3).
2. An augmented inference strategy based on self-consistency over transformations (Section 4).
3. A  base model with parameters θ0 that is fine-tuned on a dataset D F T  of similar tasks (Section 5).

2.4     Experimental Setup

To investigate the impact of each TTT  component, we conduct experiments by varying one component while
holding the others constant at their optimal values (described in their respective sections). Our default 
configuration in the experiments uses the following settings:

Model Architecture & Optimization     We use an 8B parameter language model from the Llama-3 models,
and 1B, 3B from Llama-3.2 models (Dubey et al., 2024). We use Low-Rank Adaptation (LoRA) (Hu et al., 2021)
for parameter-efficient test-time training. For each task d, we initialize a separate set of L o R A parameters that
are trained on the dataset D T T T .  The L o R A  rank is set to 128, and adaptations are applied to MLP, attention,
and output layers. We train models with AdamW optimizer (Loshchilov and Hutter, 2019) with 2 epochs 
with batch sizes of 2.

Data & Formatting     For efficient evaluation purposes, we randomly pick 80 balanced A R C  tasks from A R C
validation set, includes 20 easy, 20 medium, 20 hard, 20 expert tasks according to the classification in LeGris
et al. (2024a) (see Appendix A.2 for this task list). We will use this subset of A R C  tasks throughout the paper,
except our final results given in for the full validation set (Section 6). We limit D T T T  to have maximum of 250
examples per task for efficiency reasons. With that, the whole TTT  and inference process takes approximately 
12 hours for 100 randomly sampled validation tasks when using an NVIDIA-A100 GPU. Appendix B.2
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provides additional details on the hyper-parameters. Input grids are converted to text using numpy’s default 
array printing format as shown in Fig. 8.

In the following sections, we investigate the key factors that contribute to successful abstract reasoning with
language models. Our analysis covers the impact of fine-tuning data D F T  data, T T T  data D T T T ,  training
objectives, inference procedures, and model size, providing insights into effective strategy for deploying 
test-time training.

3 What Dataset and Loss During T T T ?

3.1     Data Generation

Given a task, we take the set of training input-output pairs (xtrain , ytrain)K and turn them into an augmented
set of test-time-training tasks D T T T .  We obtain D T T T  using a two-step process: First, we create a set of leave-
one-out in-context learning tasks from the given training input-output pairs. Second, we use invertible 
rule-based transformations on this set to obtain an augmented dataset. This process is summarized in Fig. 2.

Step 1 - Leave-one-out Tasks: By excluding the jth example pair from the training examples, we can create 
the following synthetic task:

d I C L  =  (  (xk , yk )k ∈{1,...,K }\{ j } , xj, 
{z 

yj ) where j ∈ [1, K] (2) 

synthetic training examples synthetic test example

where dj synthetic training task with the j-th example pair treated as the test case. We can generate n different 
tasks, each containing n −  1 example pairs. We further include two randomly permuted version of dj where
we permute the order of the training examples.

Step 2 - Rule-based transformations: Consider an invertible transformation t such that t−1 (t (x )) =  x. For 
every task obtained in step 1, we can use t to generate a new augmented task t(d ICL ), where t is applied to
each individual grid in the task.
We choose simple transformations that preserve the fundamental relationships while introducing controlled 
variations such as rotation, flips, color permutation, example permutaton, size scaling, etc. The list and the 
description of these transformations are provided in Appendix B.1. Finally, we obtain

D T T T- I C L  =  { t ( d I C L ) } for all t, j pairs. (3)

Baseline: End-to-End Learning Tasks     For comparison to the “test-time in-context learning” approach
described above, we also evaluate an “test-time end-to-end learning” approach. We create a supervised
dataset directly from the example demonstrations by treating each input-output pair as an independent
training instance. Unlike the in-context learning setup, no context is used for prediction:

dE2E =  (x j , y j ) where j ∈ [1, K] (4)

Note that this would be equivalent to leave-(n −  1)-out task set in I C L  setting as no training examples are 
provided as context. Similar to I C L  case, we can apply rule-based transformations to augment the dataset:

DTTT-E2E  =  { t ( d E 2 E ) } for all t, j pairs. (5)

This approach is computationally more efficient as it directly learns the input-output mapping without the 
overhead of managing demonstration context i.e. the few-shot prompt.

3.2     Optimization Objective

During test-time training, we optimize a set of task-specific parameters using L o R A  (low-rank adaptation; 
Hu et al. (2021)) while keeping most of the base model frozen. This approach allows computationally efficient
adaptation while maintaining the model’s general capabilities.
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Figure 3: Accuracy of different data and optimization ablations in T T T:  Our data ablation studies reveal 
that the I C L  data format is crucial for effective TTT,  and that applying transformations to augment the T T T  
dataset notably enhances performance. In optimization ablations, learning task-specific adapters significantly 
outperforms using a single adapter. Additionally, taking a loss on the in-context demonstrations provides a 
minor performance boost, while using quantized L o R A  results in only a slight performance decrease drop. 
Full discussion in Section 3.3.

Training Objective:     Given a task’s test-time training dataset D i , we minimize the standard language 
modeling loss on both the demonstrations and test outputs:

L i ( D T T T ; θ i )  =  ∑  
d ∈DTTT

∑
K  

LLM(yn|x1, y1, ...,  xn ;θi)  +  LLM(ytest|x1, y1, ...,  xK , yK ,  xtest ; θ i )

!

(6)
n = 2

where L L M  is the standard cross-entropy loss for language modeling. Note that we include loss terms for
demonstrations starting from the second example (n =  2). By doing so, we encourage the model to start 
reasoning about the transformation pattern from the second demonstration pair itself.

Task-Specific Parameters:     Instead of learning a single L o R A  adapter for all tasks in the test set, we learn
an individual task-specific L o R A  adapter for each task. That is, we obtain N  different L o R A  adapters, where
N  is the number of test tasks.

3.3     Results

We compare the main implementation of our method to the following ablations:

1. F T  (No TTT) :  The vanilla baseline where T T T  is ablated and the fine-tuned model is used instead.
2. No Transformations: No transformation-based data augmentation. That is, data from step 2 of the 

data generation pipeline described in Section 3.1 is not included in the test-time training dataset.
3. End-to-End (E2E) Data: Instead of the standard in-context task setup, we use the end-to-end task 

formulation, as described in Section 3.1.
4. Shared T T T:  In contrast to learning a task-specific L o R A  adapter, a single L o R A  adapter is learned 

using an aggregated dataset of all tasks.
5. No Demonstration Loss: No loss is taken on the demonstrations in the training outputs of the data. 

That is, the T T T  loss is simply:

L i ( D T T T ; θ i )  =  

∑  ( L L M  (ytest|x1, y1, ...,  xK , yK ,  xtest ; θi)) (7)
d ∈DTTT

6. QLoRA :  Rather than full-precision base model updates, quantized L o R A  adapters (Dettmers et al., 
2024) are learned for each task, which is the alternative for L o R A  considered for memory efficiency.
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Figure 4: Augmented inference and hierarchical voting (Section 4): We use leave-one-out tasks and
invertible geometric transformations to obtain multiple equivalent versions of the task for augmented
inference. Predictions from these versions are aggregated with a hierarchical voting strategy: first, voting 
is performed within each transformation, and then the top candidates from each transformation undergo
global voting to yield the top two predictions.

Results are presented in Fig. 3. Our T T T  method is effective, improving fine-tuned model accuracy ap-
proximately 6 ×  (5 → 29). The structure of the auxilary task significantly impact T T T  effectiveness. Using 
in-context learning tasks substantially outperforms using end-to-end tasks, showing a 11 (38% decrease) 
tasks relative performance drop under identical conditions. This may be simply due to training less parame-
ters. Dropping transformations applied to augment data hurts by 16 tasks (55% decrease).

Next, we ablate multiple components of T T T  optimization to analyze their contribution to the performance. 
Learning a single L o R A  adapter across all tasks reduces performance on 7 tasks (24% decrease). This is 
expected as learning a dedicated adapter allows more parameters to train per task. Second, the decision that 
we made by taking loss on the output demonstrations marginally improves the performance (26 → 29), as
we believe that this forces the model to reason about the transformation while processing the 
demonstrations. Finally, we observe that using quantized L o R A  (QLoRA) only leads to a marginal drop 
in performance (29 → 26) — in memory-bottlenecked scenarios using QLoRA may be viable.

4 What Inference Strategy After T T T ?

4.1     Augmented Inference

Recent work has shown that scaling test-time compute can significantly improve the performance of LMs. 
One of the most common techniques to do this is by sampling multiple responses, and then selecting the 
best response using a ranker. However, while sampling is very effective in domains with multiple possible 
solutions (programs in code) or multiple possible paths to the final answer (math), it can be detrimental 
when generating answers directly, as there is no way to directly enforce diversity across samples 
while ensuring coherence within samples. As an alternative inference-time scaling, we use an augmented 
inference strategy that generates multiple prediction candidates by using geometric transformations, 
combined with a greedy decoding scheme.

For a given task with training examples (xk , yk )K and test input xtest, we use invertible geometric transfor-
mations to produce equivalent transformed versions of the task, as shown in Fig. 3. Let T be some set set
of invertible geometric transformations (e.g., rotations and reflections). For each transformation t ∈ T , we 
apply t to all training demonstrations and the test input and run our model with these transformed inputs.
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Figure 5: Accuracy of different invertible transformations and voting schema: Our analysis shows that
while individual transformations generally perform at a modest level and are comparable to one another,
aggregating across them through voting yields substantial improvements. Notably, a hierarchical voting
strategy with two voting stages surpasses a flat voting approach. Our hierarchical method approaches
oracle-level performance, demonstrating its effectiveness in accurately selecting the correct answer when 
present. Full discussion in Section 4.3.

We then apply the inverse transformation to obtain the final prediction for that transformation.

y ∼ LM(t(dinput )) : =  [t(x1), t(y1), . . . , t(xtest)]                                                      (8) 

yt =  t−1 (y)                                                                                                                           (9)

We further augment our predictions by permuting the order of training examples. For each transformation g, 
we sample n =  2 different permutations of the demonstration sequence, resulting in n · |T | total predictions 
per task. This is to mitigate any bias in the model’s processing of the demonstration sequence. Bober-Irizar 
and Banerjee (2024) also find transpose and rotation is helpful to produce extra prediction candidates.

4.2     Ensembling Predictions (Voting Strategy)

We employ a hierarchical voting strategy to determine the final prediction from the set of candidates {y}n·|T |. 
This approach involves two stages of voting to progressively narrow down the best candidates: first, by 
selecting the most frequent predictions within each transformation, and then by conducting an overall vote 
across transformation-specific candidates to identify the top-2 most frequent predictions. The details of each 
stage are as follows:

1. Intra Transformation Voting: We group predictions by their corresponding transformation t and
select the top-3 most frequent predictions within each group. If fewer than 3 unique predictions
exist within a group, we supplement the candidates by computing additional predictions through:

•  Row-based majority: For each row in the predicted output grid, we take the most frequent row 
values across all predictions in the transformation group.

•  Column-based majority: Similarly, for each column in the predicted output grid, we take the 
most frequent column values across all predictions in the transformation group.

2. Global Voting: Using the selected transformation-specific candidates obtained from (1), we con-
duct an overall vote to select the top-2 most frequent predictions for submission. In case of a tie,
predictions with the identity transformation are given priority.

4.3     Results

To analyze the impact of augmented inference and voting, we run the following ablations:

1. Vanilla: This baseline follows a standard inference approach without any augmented inference or
voting. It generates 2 predictions from the model for 2 permutations of the task. This setup serves as
a reference point to assess the benefits of our augmented inference and voting strategy.
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Figure 6: L L M  based synthetic tasks generation: Given some seed task descriptions and task generator
functions in Python, we generate more generator functions to produce novel tasks. We use three different
approaches: (1) few-shot prompting with only generators, (2) few-shot prompting with generators and
task descriptions, (3) two-stage approach: first generate free form descriptions, then condition on them to 
generate more generators (shown in Fig. 9).

2. Transformed Inference (Rotate/Transpose/Flip): Measures performance when predictions are
generated solely from a specific transformed version of the task shown in Fig. 5. This assesses the
individual effectiveness of each transformation applied in isolation. Note that Vanilla can also be
considered a part of this category, with the transformation being the identity function .

3. Hierarchical Voting: Our full pipeline, which includes both augmented inference and voting.
4. Flattened Voting: Instead of using a hierarchical voting strategy, we perform a single voting round 

on the full set of n · |T | predictions to identify the 2 most frequent predictions.
5. Oracle: The oracle selects the correct answer if it exists in the set of n · |T | predictions. The oracle 

provides an upper-bound on the best performance possible if the voting procedure was perfect.

The results are summarized in Figure 5. As shown in the figure, the individual performance of specific trans-
formed versions is generally poor, with the transpose transformation yielding the worst accuracy. However, 
aggregating across these transformations through voting procedures leads to significant improvements. This 
suggests that some tasks may be easier to solve in their transformed versions, and that using self-consistency 
(voting) for aggregation is generally beneficial, a finding also observed in prior work. Additionally, while
the flattened voting procedure improves accuracy, our hierarchical voting procedure outperforms it. In fact, 
our hierarchical procedure is comparable to the oracle, indicating that hierarchical aggregation effectively 
selects the correct answer (when it exists) with high accuracy.

5 What Fine-Tuning Before T T T ?

While test-time training facilitates task-specific adaptation, the base model’s capabilities impacts the final 
performance. We developed several approaches for generating synthetic training data to enhance the base
model’s abstract reasoning capabilities through fine-tuning, exploring both automated and semi-automated 
methods for task generation. In this section, we detail our fine-tuning data generation strategies and analyze 
the impact of different data sources and model sizes on final performance.

5.1     Preparing Fine-tuning Data

Hodel (2024) provides domain-specific language (DSL), R E A R C ,  as well as the transformation f i that solves
the task-i, and the data generation function gi that are implemented in this D S L  for each training task in
the D train dataset. These functions enable sampling of new input-output pairs that maintains the same 
underlying transformation principle:

d =  (x, y) ∼ eval(g i ) (10)
where d represents a newly generated input-output pair that can be solved using the same transformation 
function f i as the original task-i2.

2We can verify the generated examples by asserting f i (x) =  y.



9



(a) Using Existing Generators     The generator functions gs in R E A R C  already provide an effective data 
augmentation tool by producing different instantiations of same tasks. We generate extra samples from these
training tasks by running these codes many times and randomly splitting these new examples (d ∼ eval(gi ))
to set of train and test examples. These augmented examples are already provided with their DSL  release.

(b) Few-shot Prompting an L L M      Additionally, we used several approaches to generate novel tasks using 
an LM (in our case an ensemble of GPT4 and GPT4-o).

The simplest approach generates new task generators using few-shot examples:

gʹ ∼ LM(g1 , g2, . . . , gm ) (11)
where gʹ is a new generator function and g1, . . . , gm are existing generator functions (shown in Fig. 6)s. We 
sample different m examples by uniformly from existing training set. We repeat this process multiple times

to get a good amount of tasks.
We augment the generator functions with task descriptions and jointly generate both descriptions and 
generators:

(s ʹ , g ʹ ) ∼ LM(s1 , g1, s2, g2, . . . sm, gm ) (12) 
where si represents the description of task i.
To get the task descriptions, we manually created seed descriptions for 10 training tasks. These seed
descriptions were then used to generate descriptions for the training and validation tasks through few-shot 
prompting. To increase diversity of tasks we use task descriptions with hierarchical fields (category, summary, 
and description). The process of getting these descriptions provided in the Appendix D.1.

Instead of jointly generating task descriptions and function generations, we additionally deployed a two-
stage approach described as following:

sʹ ∼ LM(s1 , s2 , . . . sm )                                                                                         (13) 
gʹ ∼ LM(s1 , g1, s2, g2, . . . , sm, gm , sʹ )                                                               (14)

This approach first generates a task description sʹ and then conditions the generator creation on both existing 
task pairs and the new description. In total we collected 6426 generators with these L L M  based approaches. 
We provide qualitative samples from these LM generated tasks in Fig. 11

(c) Geometric Transformations     Finally, our synthetic tasks are enhanced through various geometric
transformations, such as basic transformations (rotations, reflections, random shift and size scaling), pattern 
operations (random patching, tiling, and repetition), color permutations, and composite transformations 
involving sequential application of multiple basic transformations. These transformations are applied in
three ways:

•  Input grids only: (x, y) → (t(x), y) 
•  Output grids only: (x, y) → (x, t(y))
•  Both input and output: (x, y) → (t(x), t(y))

The complete specification of transformations and their application details are provided in Appendix B.1. 
These transformations are applied randomly to variants of tasks with 30% of the time.

5.2     Results

We perform full fine-tuning 1B, 3B Llama 3.2 instruction-tuned, and 8B Llama 3 instruction-tuned using 
augmented data. The format and training objective is same as the ones described for T T T  in Section 2.4. 
Hyper-parameter details are given in Appendix B.2. We do the following ablations for augmented data:

1. No FT:  The original Llama 3 instruction-tuned model without any fine-tuning.
2. All:  We use all methods described in Section 5.1, including R E A R C ,  rule-based augmentation, and 

LM generation.
3. No-Geom: We remove geometric transformations from all tasks.
4. No-LM: We only use R E A R C  and rule-based augmentation, excluding tasks generated by the LM.
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Figure 7: Left: Accuracy when fine-tuning with different data sources. While all fine-tuned models perform
similarly, their performance after T T T  shows considerable variance. As  expected, removing geometric
transformations from the fine-tuning data reduces performance compared to the model trained on the full
dataset. Surprisingly, excluding LM-generated data from fine-tuning actually outperforms the model trained 
on all data. Right: Performance results across different model sizes. As expected, performance of the base
fine-tuned model improves with increasing model size, aligning with current scaling law trends. However,
the scaling behavior after T T T  is less clear. For instance, the final performance of the 1B and 3B models is
identical after TTT.  Full discussion in Section 5.2.

How does F T  data affect T T T ?      We compare models using different fine-tuning data in Fig. 7. We find 
that the model trained on R E A R C  with rule-based augmentation achieves the strongest performance. 
Surprisingly, including LM-generated tasks hurts performance by 5%, indicating that current LM-based 
task generation methods may need more sophisticated filtering mechanisms as used in L i  et al. (2024) (see 
their results in Section 6). Finally, we find that FT performance shows little correlation with TTT  performance.

Model Size and Scaling in T T T      We show results using different model sizes in Fig. 7. Increasing the 
model size consistently improves FT performance, with the 8B model achieving the highest accuracy of 36%. 
We also observe that T T T  effectively closes the performance gap for smaller models, with the 1B and 
3B models achieving similar accuracy after TTT.

6 A R C  Benchmark and Comparison to Other Systems

Following our development experiments on 80 tasks, we present comprehensive results on the full A R C
public evaluation set, comparing our system against existing approaches. Our analysis focuses on three key
aspects: the impact of our T T T  methodology, the benefits of combining our approach with existing methods
and the differences between fully neural and program synthesis methods.

Impact of Test Time Training     We applied to our T T T  and inference procedure (explained in Section 3
and Section 4) to our base fine-tuned models (fine-tuned 8B model without any LM data in Section 5). T T T
improves accuracy from 39.3% to 47.1%, surpassing existing end-to-end neural model results.

Integration with Existing Methods     A  concurrent work by L i  et al. (2024) introduced BARC,  achieving 
54.4%accuracy by combining neural and program synthesis approaches—previously the highest publicly 
available result. While their fully neural approach shares similarities with our system, our TTT  and inference 
pipeline has several additional components that boost performance. In particular, our test-time-training
includes per-task L o R A  and a larger set of augmentations, while our prediction pipeline includes an 
augmented inference under invertible transformations and a hierarchical self-consistency voting scheme. 
To validate our improvements, we applied our T T T  pipeline to BARC’s fully neural model, achieving 
53% accuracy—a 35% improvement over their original T T T  method.
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Table 1: Scores of different systems on the A R C  validation set: Our T T T  pipeline improves base models
consistently. We achieve 47.1% accuracy when applied to our fine-tuned model, 53% when applied to
B A R C  model from L i  et al. (2024), achieving state-of-the-art on pure LM based approaches. We ensemble
our method with program synthesis based models, where we achieve (61.9%) state-of-the-art performance
comparable to average human performance (60.2%).

Program Synthesizer
X
X
X
B A R C  
B A R C

Fine-tuned LM
Ours 
Ours 
B A R C
Ours 
B A R C

T T T  Method
X  
Ours 
Ours 
Ours 
Ours

Avg. Human 
Best Human

Score (pass@2)
18.3% 
47.1% 
53.0% 
58.5% 
61.9%

60.2% 
97.8%

B A R C  (ensemble)                        54.4% 
B A R C  (no synthesizer)                        39.3%

Claude - Few-shot prompting                        21.0% 
GPT-4.0 - Few-shot prompting                          9.0%

Building on these results, we explored various combinations of our approach with BARC’s components:

•  Combining our T T T  pipeline and neural model with BARC’s synthesizer raised accuracy to 58.5%. 
•  Combining our T T T  pipeline with BARC’s neural model and synthesizer raised accuracy to 61.9%.

This final configuration establishes a new state-of-the-art on the A R C  public evaluation set, matching the
average human performance (LeGris et al., 2024b). While this represents significant progress, there remains
a substantial gap to the best human performance of 97.8%, indicating room for further improvements.

Comparing Program Generation and End-to-End Modeling     L i  et al. (2024) found that program synthesis
and fully neural predictors for A R C  are highly complementary, even when trained on the same tasks. Their
end-to-end neural model can only solve 42.2% of the tasks solved by the program synthesis model. However,
we find that when equipped with our T T T  pipeline, BARC’s fine-tuned fully neural model solves 73.5% of
the tasks that are solved by the program synthesis model. This suggests that our T T T  pipeline significantly
improves the neural model’s ability to learn systematic reasoning patterns similar to those captured by
program synthesis models.

7 Conclusion

In this work, we conduct an investigation of test-time training and demonstrate that it can significantly
improve LM performance on the popular A R C  dataset. We find that learning task-specific L o R A  adapters
and generating augmented test-time datasets using geometric transformations are crucial. We also develop 
an augmented inference pipeline that uses invertible transformations to generate multiple predictions and 
then uses self-consistency to select the best candidates. Our overall pipeline applies multiple test-time
computation methods, with each component contributing positively. This suggests that not only can test-
time compute improve LM performance, but different test-time methods can also complement one another.
Our T T T  pipeline, combined with an existing method (BARC), achieves state-of-the-art results on the A R C
public set and performs comparably to an average human. Our findings suggest that test-time methods
could play a pivotal role in advancing the next generation of LMs.
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Limitations

Evaluation Framework     The A R C  challenge maintains separate public and private leaderboards in which
the private evaluation conducted on hidden tasks. While our T T T  pipeline demonstrates promising results
on the public benchmark, hardware constraints (12 hours/100 tasks runtime on an A100 GPU for Llama 8B)
currently precludes submission to the official leaderboard, which requires completion within 12 hours on
P100 or 2 × T4  N V I D I A  GPUs. In development, we use 80 tasks for validation, and we acknowledge potential
sources of optimization bias. The geometric augmentations detailed in Appendix B.1 were selected during
the T T T  phase. Standard hyper-parameters (learning rate, batch size, epochs) were optimized using our
development set with 80 validation tasks.

Experimental Reproducibility     Given the computational requirements of our experiments, this preprint
reports results without comprehensive standard error analysis. Our preliminary observations indicate
minimal variance across runs, and we plan to include detailed statistical analysis in the final version.

Data Leakage     Even though the base Llama-3 perform extremely poorly on the public validation set, the
public availability of the dataset on various platforms (GitHub, Kaggle) introduces the possibility that these
models may have encountered these examples during pre-training.
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A A R C  Dataset

We present the tasks in development set, format and evaliation for the A R C  dataset (available in this https 
link.).

A.1     Data Format

We use numpy’s array printing format for all the experiments as shown in Fig. 8.

A.2     List of 80 Tasks Used For Development

We use following (Table 2) tasks validation tasks for our development.

Table 2: Selected development tasks and their hardness level based on LeGris et al. (2024b).

I D Level

0a1d4ef5 easy 
692cd3b6 easy 
1da012fc easy 
66e6c45b easy 
3194b014 easy 
963f59bc easy 
d37a1ef5 easy 
358ba94e easy 
f3cdc58f easy 
55059096 easy 
c7d4e6ad easy 
4b6b68e5 easy 
00576224 easy 
a04b2602 easy 
e9c9d9a1 easy 
ef26cbf6 easy 
7ee1c6ea easy 
e9ac8c9e easy 
1a2e2828 easy 
770cc55f easy

I D

762cd429 
e7639916 
e1d2900e 
aee291af 
e95e3d8e 
e0fb7511 
ae58858e 
93c31fbe 
27a77e38 
9bebae7a 
9ddd00f0 
fe9372f3 
69889d6e 
15663ba9 
17b80ad2 
16b78196 
5b6cbef5 
40f6cd08 
505fff84 
d017b73f

Level I D

medium e5c44e8f 
medium 604001fa 
medium 4364c1c4 
medium 506d28a5 
medium 2037f2c7 
medium d5c634a2 
medium ac605cbb 
medium 27f8ce4f 
medium 66f2d22f 
medium 3ed85e70 
medium 8b28cd80 
medium d19f7514 
medium dc2aa30b 
medium f5c89df1 
medium 50f325b5 
medium 08573cc6 
medium 3d31c5b3 
medium 94133066 
medium 136b0064 
medium 90347967

Level I D Level

hard e99362f0 expert 
hard 1acc24af expert 
hard f9a67cb5 expert 
hard ad7e01d0 expert 
hard ea9794b1 expert 
hard 58e15b12 expert 
hard 891232d6 expert 
hard 5833af48 expert 
hard 4ff4c9da expert 
hard 5b692c0f expert 
hard e2092e0c expert 
hard 47996f11 expert 
hard 34b99a2b expert 
hard 1c56ad9f expert 
hard e6de6e8f expert 
hard fea12743 expert 
hard 31d5ba1a expert 
hard 79fb03f4 expert 
hard 8719f442 expert 
hard a8610ef7 expert

A.3     Evaluation

We follow the competition rules and in any of the two pass@2 predictions of the system is correct, we
consider that test as correct. In the reported task level accuracies, we did not give partial points if all tests are 
not solved, except the final table Section 6.

B T T T

We present transformation used in T T T  and the training details.

[ [ 0  0  0  0
 s t r 0  1  2  0

0 3  4  0

0 0  0  0 ] ]

[ [ 0  0  0  0
 s t r 0  5  4  0

0 6  1  0

0 0  0  0 ] ]

Figure 8: Data Format: We convert grids to strings by representing them as numpy arrays of digits from 0 to 
10 where each digit corresponds to a different color.
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Table 3: We provide the augmentations use in our T T T  procedure with their function signature and descrip-
tion.

Augmentation Name
Rotate(90) 
Rotate(270) 
Rotate(180) 
F l i p ( 0 )  
F l i p ( 1 )
Ref lect (0 ,  reverse=True)

Ref lect (1 ,  reverse=True)

Ref lect (0 ,  reverse=False)

Ref lect (1 ,  reverse=False)

RandomTranslateXY()

Transpose() 
IncreaseResolution(2)

IncreaseHeight(2)

IncreaseWidth(2)

Chain([Rotate(90), IncreaseResolution(2)])

Chain([Rotate(270),IncreaseResolution(2)])

Chain([Rotate(180),IncreaseResolution(2)])

Chain([F l ip(0) , IncreaseResolut ion(2) ] )

Chain([F l ip(1) , IncreaseResolut ion(2) ] )

Chain([Transpose(), IncreaseResolution(2)])

Description
Rotates a grid 90 degrees. 
Rotates a grid -90 degrees. 
Rotates a grid 180 degrees. 
Flips a grid horizontally 
Flips a grid vertically
Flips a grid horizontally and prepend to the left of 
the original grid
Flips a grid vertically and prepend to the above of 
the original grid
Flips a grid horizontally and append to the right of 
the original grid
Flips a grid vertical and append to the left of the 
original grid
Shifts a grid randomly both in horizontal and vertical 
directions. The maximum shift size is 4
Reflect a grid on diagonal
Upscale the grid by interleaving elements in both 
horizontal and vertical directions
Upscale the grid by interleaving elements in vertical 
direction
Upscale the grid by interleaving elements in horizon-
tal direction
Sequential application of Rotate(90) and 
IncreaseResolution(2)
Sequential application of Rotate(270) and In-
creaseResolution(2)
Sequential application of Rotate(180) and In-
creaseResolution(2)
Sequential application of Rotate(180) and In-
creaseResolution(2)
Sequential application of Rotate(180) and In-
creaseResolution(2)
Sequential application of Rotate(180) and In-
creaseResolution(2)

B.1     Transformations

We provide the augmentations used in TTT  in the Section 3, please refer to our code base for their implemen-
tations. After application of these augmentation, we additionaly shuffle colors and shuffle training examples. 
Note that these transformations are applied to all input and output grids.

B.2     Training Setup & Hyperparameters

We use torchtune(torchtune maintainers and contributors, 2024) library to train L o R A  adapters on Llama-3
family of models. We apply L o R A  training to query and value projection weights of the self-attention layer,
to the MLP weights and to the output projection layer (was only available for Llama-3 8B in torchtune). We
present hyper-parameters of this training in Table 4.

C Inference

We resort to vLLM (Kwon et al., 2023) library for prediction as it provides fast kernels and batched inference 
for our models and L o R A  inference. We just use greed decoding as we did not see improvements with
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temperature sampling in our early experiments. We use 90, 180 degree rotations, horizontal, vertical, and 
diagonal (transpose) flips as our invertible transformations.

D LM Data Generation

We described three approaches in Section 5 to use LM, we generated 6426 task generators by few-shot 
prompting GPT-4 and GPT-4o models (OpenAI, 2023; Hurst et al., 2024).

D.1     Getting Descriptions for Tasks

This procedure is shown in Fig. 10. We initially described 10 training tasks with the hierarchical-style shown
in Fig. 6. Then, for other training tasks tasks, we obtained less quality crowd-worker annotations from L A R C
(Acquaviva et al., 2022) project. By using our high-quality seed annotations and their L A R C  version, we
10-shot prompt and LM to produce high quality annotations for the other training tasks.

You are an intelligent agent that can induce task descriptions from examples. For Category, please 
*do not* use generic terms like Transformation, Pattern Recognition.
—————-
Task: {stringified task inputs and outputs}
L A R C  Description: {description of the task-1 from L A R C  dataset} 
Good Description: {hierarchical description}
—————-
[truncated] 

—————-
Task: {stringified task inputs and outputs for task-K}
L A R C  Description: {description of the task-K from L A R C  dataset} 
Good Description: {hierarchical description}
—————-
Task: {stringified task inputs and outputs for query task}
L A R C  Description: {description of the query task from L A R C  dataset}

D.2     Few-shot Prompting Details

We use the following simple prompting template with k-shot prompting for all data generation procedures,
where numbers filled with examples sampled from seed set. In simple few-shot generation, we exclude
examples. We use GPT-4 and GPT-4o to generate the new scripts.

Table 4: T T T  hyper-parameters

Hyper parameter
r lora rank 
α lora alpha
learning rate 
epochs 
batch size 
optimizer

Search Space
[128] 
16
[5e-5, 1e-4] 
2
[1, 2]
AdamW (Loshchilov and Hutter, 2018)
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LLM

Examples Generators + Annotations from the training set

Examples Annotations from the training set

C a t e g o r y
 Extens ion, L ines
 S u m m a r y

Connect in g b locks w it h colored l ines
 D es c r ip t i on

In t h e i n p u t w e s e e ra n d o m l y p l a c e d b lo c k s a n d w e n e e d t o  
connect them t o their h orizonta l or ver t ical neighbors wi t h l in es
of t h e s a m e c o lor.

C a t e g o r y
 Extens ion, L ines
 S u m m a r y

Connect in g b locks w it h colored l ines
 D es c r ip t i on

In t h e i n p u t w e s e e ra n d o m l y p l a c e d b lo c k s a n d w e n e e d t o  
connect them t o their h orizonta l or ver t ical neighbors wi t h l in es
of t h e s a m e c o lor.

d e f  g e n e r a t e ( d i f f _ l b :  f l o a t ,  d i f f _ u b :  f l o a t )  - >  d i c t :
 #  s e t  t h e  s i z e  l i m i t s

d i m _ b o u n d s  =  ( 3 ,  3 0 )

#  g e t  t h e  p o s s i b l e  c o l o r s  f o r  t h e  b l o c k s
 c o l o p t s  =  r e m o v e ( 8 ,  i n t e r v a l ( 0 ,  1 0 ,  1 ) )
 #  g e t  r a n d o m  s i z e  f o r  t h e  c a n v a s

h  =  u n i f i n t ( d i f f _ l b ,  d i f f _ u b ,  d i m _ b o u n d s )
 w =  u n i f i n t ( d i f f _ l b ,  d i f f _ u b ,  d i m _ b o u n d s )
 #  g e t  r a n d o m  b a c k g r o u n d  c o l o r

. . .

r e t u r n  { ' i n p u t ' :  g i ,  ' o u t p u t ' :  g o }

LLM

Generated Generators

d e f  g e n e r a t e ( d i f f _ l b :  f l o a t ,  d i f f _ u b :  f l o a t )  - >  d i c t :
 #  s e t  t h e  s i z e  l i m i t s

d i m _ b o u n d s  =  ( 4 ,  3 0 )

#  g e t  t h e  p o s s i b l e  c o l o r s  f o r  t h e  b l o c k s
 c o l o p t s  =  r e m o v e ( 2 ,  i n t e r v a l ( 0 ,  1 0 ,  1 ) )
 #  g e t  r a n d o m  s i z e  f o r  t h e  c a n v a s

h  =  u n i f i n t ( d i f f _ l b ,  d i f f _ u b ,  d i m _ b o u n d s )
 w =  u n i f i n t ( d i f f _ l b ,  d i f f _ u b ,  d i m _ b o u n d s )
 #  p i c k  a  r a n d o m  c o l o r  f o r  t h e  b a c k g r o u n d
 . . .

r e t u r n  { ' i n p u t ' :  g i ,  ' o u t p u t ' :  g o }

Generated Annotations

C a t e g o r y
 Recoloring, L ines
 S u m m a r y

l ines are re-c o lore d t o re d w h i le blocks k e p t t he same
 D es c r ip t i on
 In t he input , t h e re are b locks a n d ful l l in e s fro m edges t o e d g e s .
The l in e s are re - c o lore d t o red w h i le t h e b lo c k s are ke p t t h e same.

Figure 9: Two-stage generation using an LLM :  First, we prompt the L L M  to generate a task description
using few-shot prompting. Then, we generate the new generator based on existing task pairs and the newly
created description.

10 seed  Manually  Created  and Crowd sou rc e d  Annotations

In the  input , y o u  s h ou l d  see
Categor y

grey squares along the s ide of the grid
         Insertion, Dots
 T h e  output  g r i d  size

Summar y

should remain the same
Filling the intersection of horizontal and 

To  m a k e  t h e  output , you h av e  to
vertical a x e s  drawn from the e d g e  blocks

 a d d  red dots where the imaginary lines        Description:

of the gray squares intersect In the input, there are blocks in on the 
e d g e s  of the canvas,  imagine drawing 
lines from each block to the opposite 
edge.  The intersection of these lines is 
filled with a  different color.

Example with Crowd sou rc e d  Annotations (from L A R C )

In the  input , y o u  s h ou l d  see

a b lack grid with gray sha p e s  that are varied
in their s ize  and form.

T h e  output  g r i d  size

remains the same a s  the input grid.
 To  m a k e  t h e  output , you h av e  to

copy the input grid. Then count how many 
gray squares make up each of the individual 
shapes. If the shape  uses  (6)  gray squares, 
change those gray squares  to red. If the 
shape  has any other number of gray 
squares, change the gray squares to blue.

LLM

Example with Ref ined  Annotations

Categor y
 Insertion, Dots
 Summar y

Filling the intersection of horizontal and 
vertical a x e s  drawn from the e d g e  blocks
 Descr ipt ion:

In the input, there are blocks in on the e d g e s
of the canvas,  imagine drawing lines from 
each block to the opposite edge.  The 
intersection of these lines is filled with a  
different color.

Figure 10: Generating quality seed descriptions: We use few-shot prompting to generate descriptions
for a given task, using 10 manually created seed descriptions along with crowd-worker annotations from
Acquaviva et al. (2022) as few-shot examples. For a given new task, we similarly provide the LM with
examples and crowd-worker annotations (available only for training tasks).

You are a problem generator on 2D grids of colors. Here are some examples of such transformations, 
please follow the format:
—————-
Example: {description of the generator function-1} 
Script: {generator function-1}
—————-
[truncated] 

—————-
Example: {description of the generator function-K} 
Script: {generator function-K}

Please generate more and make sure they are different:

E Fine-tuning

In each dataset described in Section 5, we generated approximately 600000 A R C  tasks from the available
task generator functions (e.g. training tasks, R e A R C  tasks, and LM generated tasks) by repeatedly picking
2-7 examples from the generated input outputs, and also applying geometric transformations if used.

E.1     Fine-tuning Transformations



We use all the transformations given in Appendix B.1, and some additional transformations given in Table 5. 
In the fine-tuning case, different from TTT,  we apply augmentations to only inputs, only outputs or both.
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Table 5: We provide the additional augmentations use in our data generation for fine-tuning with their 
function signature and description.

Augmentation Name 

Repeat(direction, n)

DropoutOutput 
DropoutInput

Description
Rotates a grid in horizontal or vertical direction by n 
times.
Randomly deletes some patches of the output grids. 
Randomly deletes some patches of the input grids

Table 6: Fine-tuning hyper-parameters

Hyper parameter
learning rate 
epochs 
batch size 
optimizer 
scheduler

Search Space
2.5e-5 
2
32
AdamW (Loshchilov and Hutter, 2018) 
Cosine L R  Schedule with 2k warmup

E.2     Fine-tuning Hyper-parameters

We perform full fine-tuning on LLama-3 family models by using torchtune library. We train each model up
to 16000 steps. We use 2xNVIDIA A100 GPU for 1B models, 4xNVIDIA A100 GPU for 3B and 8B models. We
present hyper-parameters in Table 6.

E.3     Qualitative Examples

Figure 11: Example tasks generated by LM data augmentation procedure: We display three reasonable
tasks that we can infer a simple transformation (valid), and three tasks that we could not infer a simple
transformation (invalid).

We present some qualitative examples from our L L M  data generation procedure in Fig. 11.
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